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Abstract— Between 6 and 9 months of age, infants begin to
differentiate between the actions of others that are “rational”
with respect to goals and those that are not. According to the
teleological stance theory, this behavior is underpinned by an
innate,  naive  rationality  principle;  according  to  a  statistical
learning account, experience alone is sufficient to explain this
behavior.  We  present  a  recurrent  neural  network
implementation  of  statistical  learning  that  incorporates
relevant  pre-experimental  experience  that  serves  to  shape
expectations about goal-directed action. This model replicates
the  looking-time  patterns  of  infants  at  different  points  in
developmental  time,  and  it  demonstrates  that  a  rationality
principle is not necessary to account for the extant data.

I. INTRODUCTION

Infants  are  sensitive  to  the  goal-directed  nature  of
observed actions [1]. There is evidence that 9-mo-old infants
expect inanimate moving objects to take the most efficient
path  to  a  goal  [2].  With  sufficient  perceptual  cues  (e.g.,
human  features  or  equifinal  variation  in  motion),  this
expectation  can  be  observed  even  in  6.5-mo-olds  [3][4].
More  complex  abilities,  such  as  inferring  a  goal  from  an
action,  emerge  by  12  months  of  age  [5].  These  findings
parallel those from other paradigms involving goal-directed
reaching and pointing [6][7].

That  infants  expect  agents  to  act  “rationally”  was  first
observed  in  a  classic  experiment  by  Gergely  et  al.,  [8].
Infants were habituated to events in which a small circle (the
agent)  moved  towards  a  large  circle  (the  goal).  In  one
condition, a barrier blocked the most direct path, so the agent
had to “jump” over the barrier. Other infants saw the same
jumping motion but without a barrier. The infants habituated
to  the  barrier-jumping event  looked  significantly  less  at  a
new, direct path to the goal compared to a jumping path with
no  barrier,  indicating  that  they  expected  agents  to  move
efficiently with respect to goals.

In  interpreting  these  results,  Csibra  and  Gergely  [9]
claimed that infants were adopting a teleological stance. On
this view, infants can interpret a broad scope of behaviors by
relying on a naive principle of rationality. Expectations about
the  outcomes  of  actions  with  respect  to  goals  depend  on
events being well-formed according to a rationality principle:
in  the  absence  of  barriers,  agents  should  take  the  most
efficient  available  path  to  a  goal.  This  perspective  has
informed some computational models of goal-directed action
perception in both infants and adults [10].
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According to a statistical learning account, rationality is
not  directly  involved  in  action-based  inferences.  Instead,
infants expect agents to move “rationally” only to the extent
that  they  have  observed  those  kinds  of  actions  in  their
environment. In support of this view, 9-mo-old infants in the
lab expect objects to engage in non-rational actions if those
actions were frequent in habituation [11]. 

Neural networks provide a natural means of exploring the
implications of statistical learning in early development [12].
Van Overwalle [13] developed a simple network model of the
Gergely  et  al.  [8]  task,  but  it  lacked  the  ability  to  learn
internal representations and did not take into account the role
of infants' pre-experimental experience. We applied a Simple
Recurrent  Network  (SRN)  [14],  to  the  same  experimental
task,  including  an  approximation  to  infants'  visual
experiences  prior  to  habituation  to  enable  our  model  to
account  for  the  developmental  trajectory  observed  in
empirical  studies.  Importantly,  our  model  did  not  include
anything resembling a rationality principle as proposed by the
teleological stance theory.

II.METHODS

A. Network Architecture

Our simulations used a three-layer SRN. The input and
output layers consisted of 49 units each, corresponding to a
7x7 spatial grid. The hidden and context layers consisted of
40 units each. There was full, feed-forward connectivity from
input and context layers to the hidden layer, and from it to the
output layer.  Hidden activations were copied to the context
layer  after  each  processing  step.  Unit  activations  were
computed using a standard logistic (sigmoid) function. 

B. Training and Testing

The  network  was  trained  and  tested  on  events
representing simple motion of  an agent  in  the presence  of
other,  static objects (the barrier  and the goal).  To simulate
infants' relevant experience outside of the laboratory, a set of
5000 training  events  was  generated.  Each  event  displayed
agent-to-goal  motion  horizontally  across  the  input  grid,
where vertical positions of both agent and goal were varied.
A  barrier  with  randomly  chosen  vertical  extent  was
positioned in one of the three central  columns of the input
grid in 10% of these events.  Agent  motion was always as
direct  as  possible.  On  most  trials,  the  motion  path  was  a
straight  line  to  the  goal;  motion  around  barriers  was
represented by two straight paths, with a discontinuity at the
“turn” around the barrier.

Both  training  and  test  events  were  represented  as
sequences  of  10  discrete  states  of  the  agent's  motion.
Continuous  spatial  locations  and  trajectories  were
approximated by linear interpolation across contiguous units.
The network's task was to predict only the agent's location 3
time-steps  into  the  future.  A total  of  1200 weight  updates
were performed using back-propagation, with cross-entropy
error derivatives accumulated over batches of 100 randomly
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selected training events. Habituation and test events designed
to match the Gergely et al. [8] study were performed at fixed
intervals during training to simulate testing at different ages.
After  testing,  the weights were  set  to  their  pre-habituation
values to prevent earlier tests from interfering with learning.
Habituation was simulated by reducing error to half of the
starting error on each set of stimuli.

Fig. 1 Model performance (error) compared to infant looking-time at two
time points. The shaded portion of each bar represents the relative percentage
of real or simulated looking at the curved test path, and the light portion
represents looking at the straight test path. Infant data were reported in [2].
The  model  is  compared  to  6-mo-olds  at  400  weight  updates  of  pre-
experimental training, and to 9-mo-olds at 1200 updates.

Fig. 2 The model's motion predictions when habituated with a barrier (top
row) and without (bottom row). Each cell represents an output unit, where
lighter colors indicate higher activation. Output vectors at each time step
were summed to produce a trace of the full predicted path. White dashed
lines indicate the agent's  actual trajectory,  as presented in  the input,  and
white Xs indicate barrier locations. The agent moved from left to right in
each event shown, although habituation also included a right-to-left version.

III. RESULTS

The  network's  motion  prediction  error  was  used  to
approximate infant looking time, under the assumption that
error reflects a violation of expectation. The model shows the
same qualitative pattern observed in [8] and [2] (Figure 1).
As pre-experimental experience increases, the network looks
longer at (i.e. produces more error for) the curved path when
it  was  habituated  with  a  barrier,  but  not  when  it  was
habituated to the same curved path without a barrier.

The  effects  of  habituation  on  prediction  after  1200
updates  of  pre-training are  shown in Figure  2.  The model
predicts  similar  motion  for  both  test  events  within  each
condition.  When  habituated  with  a  barrier,  the  habituated
event  is  consistent  with prior  experience.  In  this  case,  the
weights remain more similar to their pre-habituation values,
and an expectation  for  straight  motion—the more  frequent
motion  in  pre-training—is  preserved.  When  habituated
without  a  barrier,  the  event  is  inconsistent  with  prior
experience, and the weights are altered so that the prediction
more  closely  resembles  the  curved  path.  This  makes  the
network better at predicting curved motion at the expense of
predicting straight motion. 

These findings support  a  statistical  learning account  of
infants' action interpretation, and suggest that a naive theory
of rational action is unnecessary to explain previous findings.
One limitation of this model is that predictions are limited to
future  actions  of  the  agent  given  the  current  state  of  the
environment.  Future  work  should  extend  this  model  to
account for related inferences, such as inferring the goal state
from an observed action [5][6][7].
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